AVIS DE SOUTENANCE de Monsieur Nathan HUBENS

L’Ecole doctorale : Ecole Doctorale de l’Institut Polytechnique de Paris
et le Laboratoire de recherche SAMOVAR – Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux

présentent

l’AVIS DE SOUTENANCE de Monsieur Nathan HUBENS

Autorisé à présenter ses travaux en vue de l’obtention du Doctorat de l’Institut Polytechnique de Paris, préparé à Télécom SudParis en :

Signal, Images, Automatique et robotique

« Compression et accélération de réseaux de neurones profonds par élagage synaptique »

le mercredi 7 décembre 2022 à 14h00

Salle Maquet
31, Boulevard Dolez 7000 Mons – Belgique

ou via le lien teams suivant : 

https://teams.microsoft.com/l/meetup-join/19%3ameeting_YmM4NzEzMzItZjU4Yy00NzM0LTg3NmYtNTVlMzJhYjA3YjFh%40thread.v2/0?context=%7b%22Tid%22%3a%22488bed9d-d6a7-48d5-ba1f-ebec3823b357%22%2c%22Oid%22%3a%22a7c0263c-c5ad-43e5-b854-ec7e51d37a79%22%7d

Membres du jury :

M. Titus ZAHARIA, Professeur, Télécom SudParis, FRANCE – CoDirecteur de thèse
M. Bernard GOSSELIN, Professeur, Université de Mons, BELGIQUE – CoDirecteur de thèse
M. Ioan TABUS, Professeur, Université de Tampere, FINLANDE – Rapporteur
M. Bruno GRILHèRES, Docteur, Airbus, FRANCE – Examinateur
M. John LEE, Professeur, Université Catholique de Louvain, BELGIQUE – Rapporteur
Mme Véronique MOEYAERT, Professeure, Université de Mons, BELGIQUE – Examinatrice
M. Thierry DUTOIT, Professeur, Université de Mons , BELGIQUE – Examinateur

Résumé :

Depuis leur résurgence en 2012, les réseaux de neurones profonds sont devenus omniprésents dans la plupart des disciplines de l’intelligence artificielle, comme la reconnaissance d’images, le traitement de la parole et le traitement du langage naturel. Cependant, au cours des dernières années, les réseaux de neurones sont devenus exponentiellement profonds, faisant intervenir de plus en plus de paramètres. Aujourd’hui, il n’est pas rare de rencontrer des architectures impliquant plusieurs milliards de paramètres, alors qu’elles en contenaient le plus souvent des milliers il y a moins de dix ans. Cette augmentation généralisée du nombre de paramètres rend ces grands modèles gourmands en ressources informatiques et essentiellement inefficaces sur le plan énergétique. Cela rend les modèles déployés coûteux à maintenir, mais aussi leur utilisation dans des environnements limités en ressources très difficile. Pour ces raisons, de nombreuses recherches ont été menées pour proposer des techniques permettant de réduire la quantité de stockage et de calcul requise par les réseaux neuronaux. Parmi ces techniques, l’élagage synaptique, consistant à créer des modèles réduits, a récemment été mis en évidence. Cependant, bien que l’élagage soit une technique de compression courante, il n’existe actuellement aucune méthode standard pour mettre en œuvre ou évaluer les nouvelles méthodes, rendant la comparaison avec les recherches précédentes difficile. Notre première contribution concerne donc une description inédite des techniques d’élagage, développée selon quatre axes, et permettant de définir de manière univoque et complète les méthodes existantes. Ces composantes sont : la granularité, le contexte, les critères et le programme. Cette nouvelle définition du problème de l’élagage nous permet de le subdiviser en quatre sous-problèmes indépendants et de mieux déterminer les axes de recherche potentiels. De plus, les méthodes d’élagage en sont encore à un stade de développement précoce et principalement destinées aux chercheurs, rendant difficile pour les novices d’appliquer ces techniques. Pour combler cette lacune, nous avons proposé l’outil FasterAI, destiné aux chercheurs, désireux de créer et d’expérimenter différentes techniques de compression, mais aussi aux nouveaux venus, souhaitant compresser leurs modèles pour des applications concrètes. Cet outil a de plus été construit selon les quatre composantes précédemment définis, permettant une correspondance aisée entre les idées de recherche et leur mise en œuvre. Nous proposons ensuite quatre contributions théoriques, chacune visant à fournir de nouvelles perspectives et à améliorer les méthodes actuelles dans chacun des quatre axes de description identifiés. De plus, ces contributions ont été réalisées en utilisant l’outil précédemment développé, validant ainsi son utilité scientifique. Enfin, afin de démontrer que l’outil développé, ainsi que les différentes contributions scientifiques proposées, peuvent être applicables à un problème complexe et réel, nous avons sélectionné un cas d’utilisation : la détection de la manipulation faciale, également appelée détection de DeepFakes. Cette dernière contribution est accompagnée d’une application de preuve de concept, permettant à quiconque de réaliser la détection sur une image ou une vidéo de son choix. L’ère actuelle du Deep Learning a émergé grâce aux améliorations considérables des puissances de calcul et à l’accès à une grande quantité de données. Cependant, depuis le déclin de la loi de Moore, les experts suggèrent que nous pourrions observer un changement dans la façon dont nous concevons les ressources de calcul, conduisant ainsi à une nouvelle ère de collaboration entre les communautés du logiciel, du matériel et de l’apprentissage automatique. Cette nouvelle quête de plus d’efficacité passera donc indéniablement par les différentes techniques de compression des réseaux neuronaux, et notamment les techniques d’élagage.


Abstract : « Towards Lighter and Faster Deep Neural Networks with Parameter Pruning »

Since their resurgence in 2012, Deep Neural Networks have become ubiquitous in most disciplines of Artificial Intelligence, such as image recognition, speech processing, and Natural Language Processing. However, over the last few years, neural networks have grown exponentially deeper, involving more and more parameters. Nowadays, it is not unusual to encounter architectures involving several billions of parameters, while they mostly contained thousands less than ten years ago. This generalized increase in the number of parameters makes such large models compute-intensive and essentially energy inefficient. This makes deployed models costly to maintain but also their use in resource-constrained environments very challenging. For these reasons, much research has been conducted to provide techniques reducing the amount of storage and computing required by neural networks. Among those techniques, neural network pruning, consisting in creating sparsely connected models, has been recently at the forefront of research. However, although pruning is a prevalent compression technique, there is currently no standard way of implementing or evaluating novel pruning techniques, making the comparison with previous research challenging. Our first contribution thus concerns a novel description of pruning techniques, developed according to four axes, and allowing us to unequivocally and completely define currently existing pruning techniques. Those components are: the granularity, the context, the criteria, and the schedule. Defining the pruning problem according to those components allows us to subdivide the problem into four mostly independent subproblems and also to better determine potential research lines. Moreover, pruning methods are still in an early development stage, and primarily designed for the research community. Indeed, most pruning works are usually implemented in a self-contained and sophisticated way, making it troublesome for non-researchers to apply such techniques without having to learn all the intricacies of the field. To fill this gap, we proposed FasterAI toolbox, intended to be helpful to researchers, eager to create and experiment with different compression techniques, but also to newcomers, that desire to compress their neural network for concrete applications. In particular, the sparsification capabilities of FasterAI have been built according to the previously defined pruning components, allowing for a seamless mapping between research ideas and their implementation. We then propose four theoretical contributions, each one aiming at providing new insights and improving on state-of-the-art methods in each of the four identified description axes. Also, those contributions have been realized by using the previously developed toolbox, thus validating its scientific utility. Finally, to validate the applicative character of the pruning technique, we have selected a use case: the detection of facial manipulation, also called DeepFakes Detection. The goal is to demonstrate that the developed tool, as well as the different proposed scientific contributions, can be applicable to a complex and actual problem. This last contribution is accompanied by a proof-of-concept application, providing DeepFake detection capabilities in a web-based environment, thus allowing anyone to perform detection on an image or video of their choice. This Deep Learning era has emerged thanks to the considerable improvements in high-performance hardware and access to a large amount of data. However, since the decline of Moore’s Law, experts are suggesting that we might observe a shift in how we conceptualize the hardware, by going from task-agnostic to domain-specialized computations, thus leading to a new era of collaboration between software, hardware, and machine learning communities. This new quest for more efficiency will thus undeniably go through neural network compression techniques, and particularly sparse computations.