

DYNAMIC LINK NETWORKS:

EMULATION AND VALIDATION

ERICK PETERSEN

DYNAMIC LINK NETWORKS

 Dynamic link network - a computer network where each link has a set of parameters that may change (e.g., bandwidth, delay, ...)

■ Let's consider N = (V , E, p1 (e), p2 (e)) where:

$$V = \{1,2,3,4\}$$

$$E = \{(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,4),(4,2),(3,4),(4,3)\}$$

$$p_1(e) = b((s,d)) = \begin{cases} \{4,5,6\}, & \text{if } d = 2\\ \{2,3,4\}, & \text{otherwise} \end{cases}$$

$$p_2(e) = d((s,d)) = \begin{cases} \{1,2\}, & \text{if } d = 2\\ \{9,10\}, & \text{otherwise} \end{cases}$$

- How to reduce the gap between real world and simulation/emulation environments?
- How adequate are simulators/emulators?

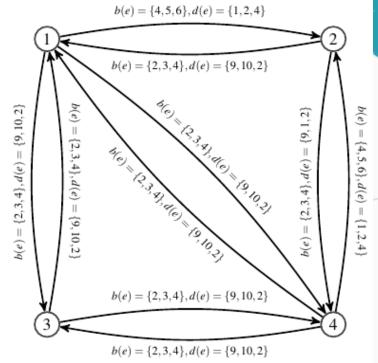


Fig.1. Example Dynamic Link network

EMULATION

An emulator platform for Dynamic Link networks has been

developed [1]

Flexible (executes any existing software)

- Dynamic change the links' parameter values
- Execute traffic scenarios by a timed sequence of network packets

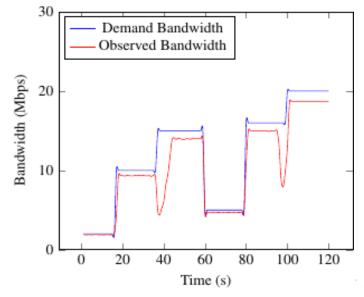


Fig.2.Varying emulated bandwidth by demand (network in Fig.1)

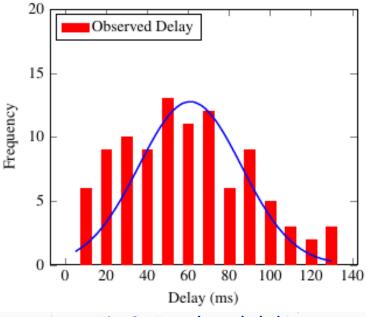


Fig.3. Emulated delay histogram (network in Fig.1)

23/03/2023

[1] E.Petersen, J.Lopez, N.Kushik, C.Poletti and D.Zenghlache,"Dynamic Link Network Emulation: A Model-based Design", 2022 The 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), 2022, pp. 536-543, ISBN: 978-989-758-568-5, ISSN: 2184-4895

VALIDATION

- A formal verification approach using MSFOL has been proposed [3].
 The network model w.r.t. various network properties can be verified.
 - Model validation
 - Run-time verification of the emulator

Description	Formula
The links are symmetric (for	$\pi_{\leftarrow}^{\rightarrow} = \forall x : \mathbb{Z} \ (((x \ge 1) \land (x \le E)) \implies \exists y :$
any link a return link exists)	$\mathbb{Z} ((y \ge 1) \land (y \le E) \land (src(E[x]) = dst(E[y])) \land$
	(dst(E[x]) = src(E[y])))
The edges in the edge array	$\pi_{e_V} = \forall i : \mathbb{Z} \ (((i \ge 1) \land (i \le E)) \implies (\exists j, k :$
are composed of nodes in the	$\mathbb{Z} \left(\left(src(E[i]) = V[j] \right) \wedge \left(dst(E[i]) = V[k] \right) \right) \right)$
node array	
The delay of all links is al-	$\pi_D = \forall i : \mathbb{Z} \ (((i \ge 1) \land (i \le E)) \implies (d(E[i]) \le i)$
ways less or equal to the con-	D))
stant D	
The bandwidth of all links is	$\pi_B = \forall i : \mathbb{Z} \ (((i \ge 1) \land (i \le E)) \implies (b(E[i]) \ge 1)$
greater or equal to the thresh-	(B)
old B	
The network topology density	$\pi_{\delta} = (E /(V *(V -1))) \ge \delta$
is at least δ	

Table 1. Network properties of interest

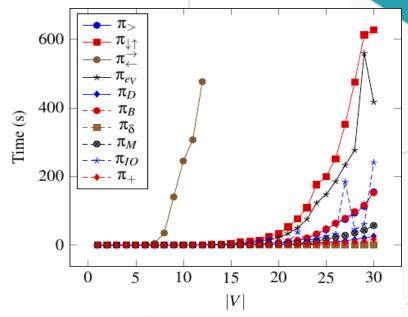


Fig.6. Time evaluation of emulator verification

[3] E.Petersen, J.Lopez, N.Kushik, C.Poletti and D.Zenghlache,"On using SMT-Solvers for Modeling and Verifying Dynamic Network Emulators: (Work in Progress)", 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), 2020, pp. 1-3, Doi: 10.1109/NCA51143.2020.9306731

SIMULATION

IP PARIS

 A Cellular Automaton has been proposed to simulate and test different network evolution patterns [2]

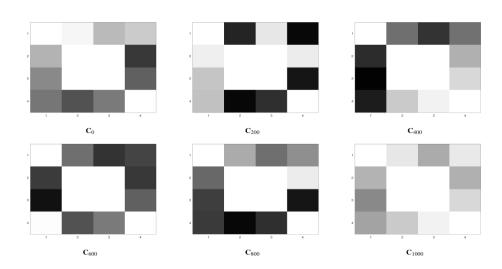


Fig.4. CA evolution for a random initial configuration (network in Fig.1)

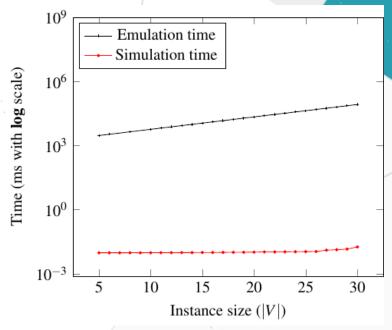
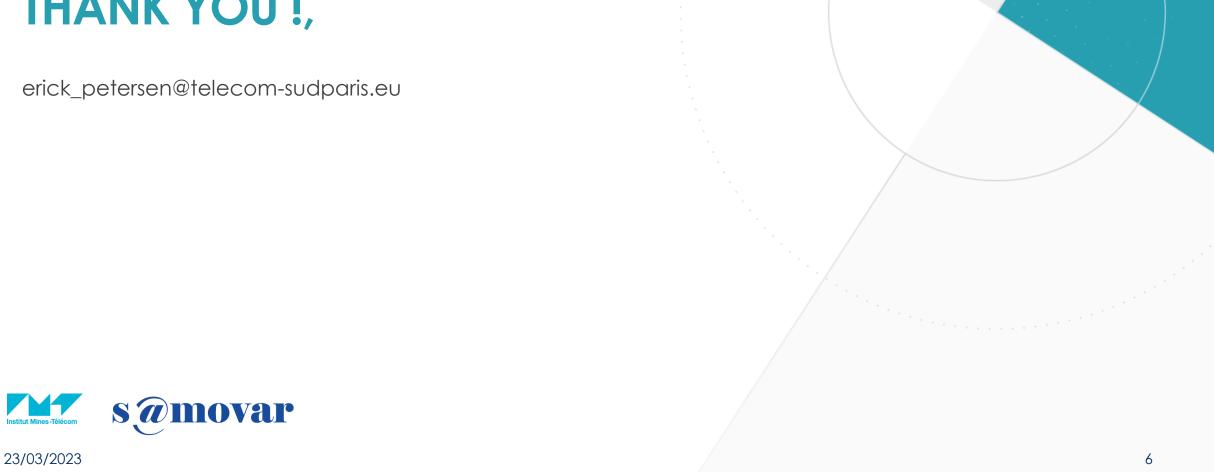


Fig.5. Simulation vs emulation performance



THANK YOU!,

