THE IMPORTANCE MARKOV CHAIN

Hugo MARIVAL

Doctorant SAMOVAR/CITI

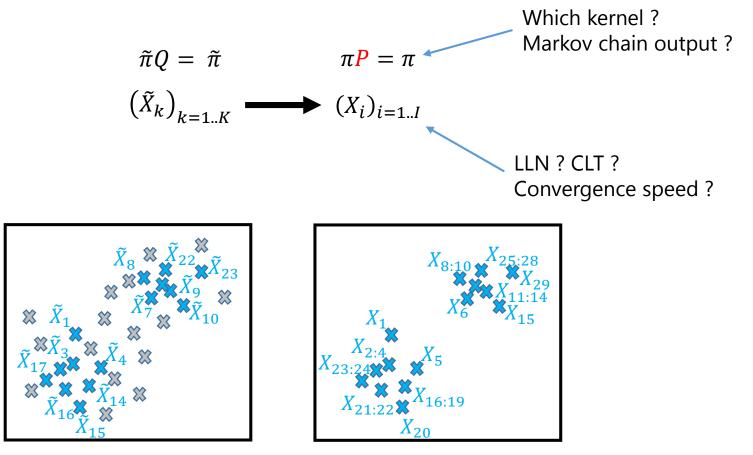
Auteurs : C.Andral, R.Douc, H.Marival, C.Robert

FRAMEWORK

Goal. Sample « according » to a *target distribution* π on X that does not work well with MCMC algorithms.

E.g. Slow space exploration for *multimodal distributions* which get stuck in a mode.

Idea. Sample from an instrumental distribution $\tilde{\pi}$ allowing better exploration, then transform the sample to get a new one distributed ~ π .



PLAN

- 1. Heuristics of the IMC algorithm
 - i. Rejection
 - ii. Rejection + MC
 - iii. Rejection + MC + « discrete » IS
- 2. Proper IMC algorithm and main results
 - i. Extended chain
 - ii. Algorithm
 - iii. Main results
- 3. Numerical experiments
 - i. Improvements on multimodal target
 - ii. Indep IMC vs. Indep MH

PRESENTATION AND HEURISTICS

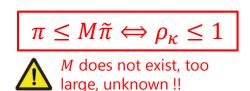
Algo. Perform the rejection algorithm on a sample $(\tilde{X}_k)_{k \in \mathbb{N}}$

 $Sh(x) = \sum_{k=1}^{\infty} \mathbb{E}_{x}^{Q} \left[h(\tilde{X}_{k})\rho(\tilde{X}_{k}) \prod_{i=1}^{k-1} (1-\rho(\tilde{X}_{k})) \right]$

generated by Q with acceptance function $\rho = \rho_M$.

REJECTION MC.

Rejection kernel S.



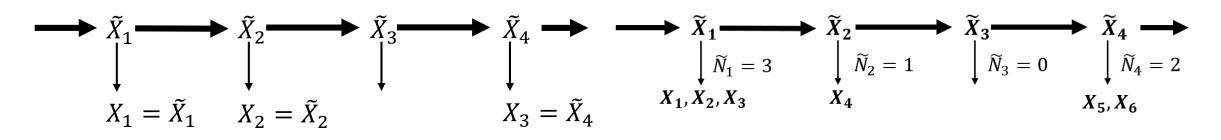
HEURISTICAL IMC.

 $\pi \leq M \tilde{\pi} \iff \rho_{\kappa} \leq 1$

Idea. Use a *repetition kernel* \tilde{R} to create a sample of repeated data points according to the density ratio :

 $\rho_{\kappa}(x) = \int n\tilde{R}(x,dn)$

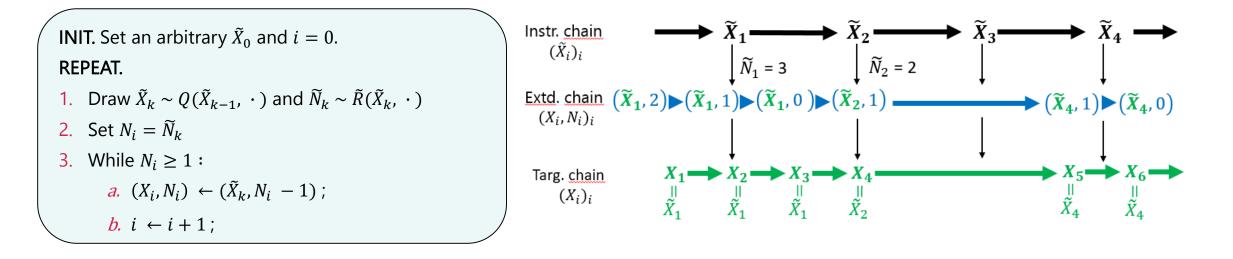
Remark. 0 repetitions corresponds to a rejection !



THE IMC ALGORITHM

Goal. Create a MC from the ideas developed previously.

Idea. Create *extended chain* $(X_i, N_i)_{i \in \mathbb{N}}$ by adding remaining repetition counter N_i as second component and extract the sample from the first component at the end.



MAIN RESULTS

Result on P.

Invariant measure. *P* admits an invariant probability measure $\bar{\pi}$, which has π as its first marginal. Moreover, $\bar{\pi}$ is unique (under mild additional conditions).

SLLN. For any
$$\xi \in M_1(\mathbb{X})$$
 and h such that $\pi(h) < \infty$,
$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_k) = \pi(h), \qquad \mathbb{P}^P_{\xi} - a.s.$$

CLT. For any $\xi \in M_1(\mathbb{X})$ and h such that $\pi(h) < \infty$, there exists $\sigma^2(h) > 0$ and $\chi \in M_1(\mathbb{X})$ s.t.

 $n^{-1/2}\sum_{i=1}^{n}(h(X_i) - \pi h) \rightsquigarrow^{\mathcal{L}} \mathcal{N}(0, \sigma^2(h)), \quad \mathbb{P}^P_{\chi} - law.$

Geom ergod. There exist constants $\delta, \beta_r > 1$ and $\zeta < \infty$ such that for all $\xi' \in M_1(\mathbb{X} \times \mathbb{N})$, $\sum_{k=1}^{\infty} \delta^k d_{TV}(\xi P^k, \bar{\pi}) \leq \zeta \int_{\mathbb{X} \times \mathbb{N}} \beta_r^n V(x) \xi'(dxdn)$

Hyp on Q and \widetilde{R} .

Q targets $\tilde{\pi}$ + mild addional conditions

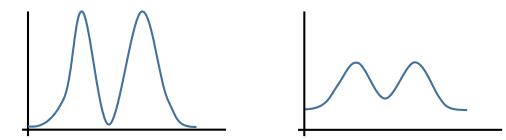
SLLN for Q

- 1. *Q* admits a solution to the Poisson equation associated to $\rho_{\kappa}h_0$ where $h_0 = h \pi(h)$.
- 2. Mild assumptions on \tilde{R} .
- 1. Small set for Q
- 2. Drift condition on that set for a function V

NUMERICAL EXPERIMENTS

A. Imrovements on multimodal target.

Idea. Sample smoothened version of multimodal distribution with *Q* then transform sample into original multimodal target distrib sample with IMC.



Question. Benefits of targetting smoothened distribution vs original ?

Setup. We target $\pi = \sum_{i=1}^{6} \mathcal{N}(\mu_i, I_5)$ an unnormalized gauss. mix., with $\mu_i \sim \mathcal{N}(0, 10^2 I_5)$

• $\tilde{\pi} = \pi^{\beta}$ for $\beta \in (0,1)$

• Q is a No-U-turn Sampler (NUTS) and \tilde{R} is a shifted Bernouilli kernel

We estimate the MSE of π by running 200 chains for each $\beta \in \{0,004,0,01,0,04,0,1,1\}$

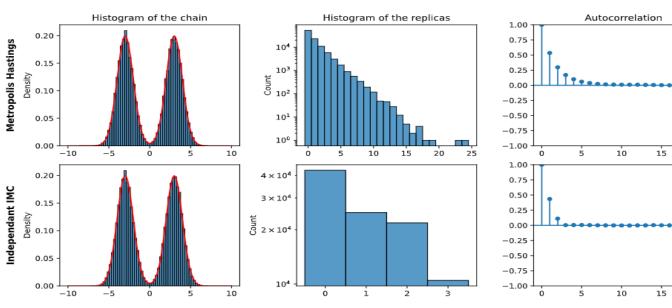
β	0.004	0.010	0.040	0.100	1.000
MSE	16.150	6.123	0.544	17.863	33.982

NUMERICAL EXPERIMENTS

B. Indep IMC vs Indep MH

Setup. We target
$$\pi = \frac{1}{2}\mathcal{N}(0,4) + \frac{1}{2}\mathcal{N}(0,4)$$
 using

- $\tilde{\pi} = \mathcal{N}(0,4)$
- $Q(x,\cdot) = \tilde{\pi}(\cdot)$ for all $x \in \mathbb{X}$
- \tilde{R} a shifted Bernouilli kernel



\square	X	X^2	X^3	X^4
MH	6.20e-03	2.33e-02	1.49e+00	1.57e+01
IMC	3.49e-03	9.74e-03	8.40e-01	7.18e+00

20

20

Table. MSE for the first 4 moments for 10^4 repetitions of chains of length 10^4 .