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FRAMEWORK
Goal. Sample « according » to a target distribution 𝜋 on 𝕏 that does not work well with MCMC algorithms.

E.g. Slow space exploration for multimodal distributions which get stuck in a mode.

Idea. Sample from an instrumental distribution 𝜋 allowing better exploration, then transform

the sample to get a new one distributed ~ 𝜋. 

𝑋𝑖 𝑖=1..𝐼
෨𝑋𝑘 𝑘=1..𝐾

𝜋𝑄 = 𝜋 𝜋𝑃 = 𝜋

LLN ? CLT ? 

Convergence speed ? 

Which kernel ? 

Markov chain output ? 
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PLAN

1. Heuristics of the IMC algorithm
i. Rejection
ii. Rejection + MC
iii. Rejection + MC + « discrete » IS

2. Proper IMC algorithm and main results
i. Extended chain
ii. Algorithm
iii. Main results

3. Numerical experiments
i. Improvements on multimodal target
ii. Indep IMC vs. Indep MH



PRESENTATION AND HEURISTICS

෨𝑋1 ෨𝑋2 ෨𝑋4෨𝑋3

𝑋1 = ෨𝑋1 𝑋2 = ෨𝑋2 𝑋3 = ෨𝑋4

REJECTION MC.

Algo. Perform the rejection algorithm on a sample ( ෨𝑋𝑘)𝑘∈ℕ
generated by 𝑄 with acceptance function 𝜌 = 𝜌𝑀.

𝑀 does not exist, too

large, unknown !!

Rejection kernel 𝑺.

𝑆ℎ 𝑥 = 
𝑘=1

∞

𝔼𝑥
𝑄
ℎ( ෨𝑋𝑘)𝜌( ෨𝑋𝑘)ෑ

𝑖=1

𝑘−1

(1 − 𝜌( ෨𝑋𝑘))

HEURISTICAL IMC.

Idea. Use a repetition kernel ෨𝑅 to create a sample of 

repeated data points according to the density ratio :

𝜌𝜅 𝑥 = න𝑛 ෨𝑅(𝑥, 𝑑𝑛)

Remark. 0 repetitions corresponds to a rejection !

𝜋 ≰ 𝑀𝜋 ⟺ 𝜌𝜅 ≰ 1𝜋 ≤ 𝑀𝜋 ⟺ 𝜌𝜅 ≤ 1



THE IMC ALGORITHM
Goal. Create a MC from the ideas developed previously.

Idea. Create extended chain (𝑋𝑖 , 𝑁𝑖)𝑖∈ℕ by adding remaining repetition counter 𝑁𝑖 as second 

component and extract the sample from the first component at the end.

INIT. Set an arbitrary ෨𝑋0 and 𝑖 = 0.

REPEAT. 

1. Draw ෨𝑋𝑘 ~ 𝑄( ෨𝑋𝑘−1, ∙ ) and ෩𝑁𝑘 ~ ෨𝑅( ෨𝑋𝑘, ∙ )

2. Set 𝑁𝑖 = ෩𝑁𝑘

3. While 𝑁𝑖 ≥ 1 ∶

a. 𝑋𝑖 , 𝑁𝑖 ← ( ෨𝑋𝑘, 𝑁𝑖 − 1) ;

b. 𝑖 ← 𝑖 + 1 ; 



MAIN RESULTS

SLLN. For any 𝜉 ∈ 𝑀1 𝕏 and ℎ such that 𝜋 ℎ < ∞, 

lim
𝑛→∞

𝑛−1 

𝑘=0

𝑛−1

ℎ 𝑋𝑘 = 𝜋 ℎ , ℙ𝜉
𝑃 − 𝑎. 𝑠.

Result on P. Hyp on 𝑸 and ෩𝑹.

Invariant measure. 𝑃 admits an invariant probability measure ത𝜋, 

which has 𝜋 as its first marginal. Moreover, ത𝜋 is unique (under

mild additional conditions).
𝑄 targets 𝜋 + mild addional conditions

SLLN for 𝑄

CLT. For any 𝜉 ∈ 𝑀1 𝕏 and ℎ such that 𝜋 ℎ < ∞, there

exists 𝜎2 ℎ > 0 and 𝜒 ∈ 𝑀1 𝕏 s.t.

𝑛− Τ1 2

𝑖=1

𝑛

(ℎ 𝑋𝑖 − 𝜋ℎ) ⇝ℒ 𝒩 0, 𝜎2 ℎ , ℙ𝜒
𝑃−𝑙𝑎𝑤.

1. 𝑄 admits a solution to the Poisson equation

associated to 𝜌𝜅ℎ0 where ℎ0 = ℎ − 𝜋 ℎ .

2. Mild assumptions on ෨𝑅.

Geom ergod. There exist constants 𝛿, 𝛽𝑟 > 1 and 𝜁 < ∞
such that for all 𝜉′ ∈ 𝑀1(𝕏 × ℕ),



𝑘=1

∞

𝛿𝑘 𝑑𝑇𝑉 𝜉𝑃𝑘 , ത𝜋 ≤ 𝜁 න
𝕏×ℕ

𝛽𝑟
𝑛 𝑉 𝑥 𝜉′(𝑑𝑥𝑑𝑛)

1. Small set for 𝑄

2. Drift condition on that set for a function 𝑉



NUMERICAL EXPERIMENTS

Idea. Sample smoothened version of multimodal distribution with 𝑄 then transform sample into original multimodal 

target distrib sample with IMC.

A. Imrovements on multimodal target. 

Setup. We target 𝜋 = σ𝑖=1
6 𝒩 𝜇𝑖 , 𝐼5 an unnormalized gauss. mix., with 𝜇𝑖~𝒩 0,102𝐼5

• 𝜋 = 𝜋𝛽 for 𝛽 ∈ (0,1)
• 𝑄 is a No-U-turn Sampler (NUTS) and ෨𝑅 is a shifted Bernouilli kernel
We estimate the MSE of 𝜋 by running 200 chains for each 𝛽 ∈ 0,004, 0,01, 0,04, 0,1,1

Question. Benefits of targetting smoothened distribution vs original ?



NUMERICAL EXPERIMENTS
B. Indep IMC vs Indep MH

Setup. We target 𝜋 =
1

2
𝒩 0,4 +

1

2
𝒩 0,4 using :

• 𝜋 = 𝒩 0,4
• 𝑄 𝑥,∙ = 𝜋(∙) for all 𝑥 ∈ 𝕏
• ෨𝑅 a shifted Bernouilli kernel Table. MSE for the first 4 moments for 104

repetitions of chains of length 104.


