

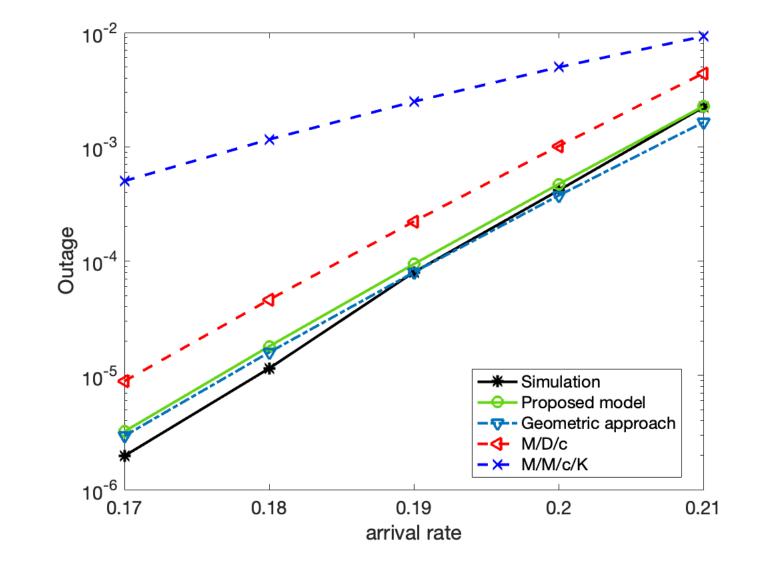
PPARIS

PERFORMANCE MODELING AND DIMENSIONING OF LATENCY-CRITICAL TRAFFIC IN 5G NETWORKS

Authors

Mohammed Abdullah

Tijani Chahed


Salah-Eddine Elayoubi

Abdel Lisser

CONTEXT AND OBJECTIVE

➤ 5G services:

- Enhanced Mobile BroadBand (eMBB): Upgraded wireless connectivity for high-quality video, audio, and data transfer.
- Ultra Reliable Low Latency Communications (URLLC): Time critical services with stringent delay (1ms) and reliability (99,999%) constraints.
- Massive Machine Type Communications (mMTC): Communication for a large number of devices, facilitating machine-to-machine interactions.
- Present use case:
- Industrial Internet of Things (IIoT)
- IIoT integrates mobile connectivity into industrial applications, enabling flexible production and incorporating mobile robots and Automated Guided Vehicles.
 We hence rely on URLLC for transporting such traffic.

Partners

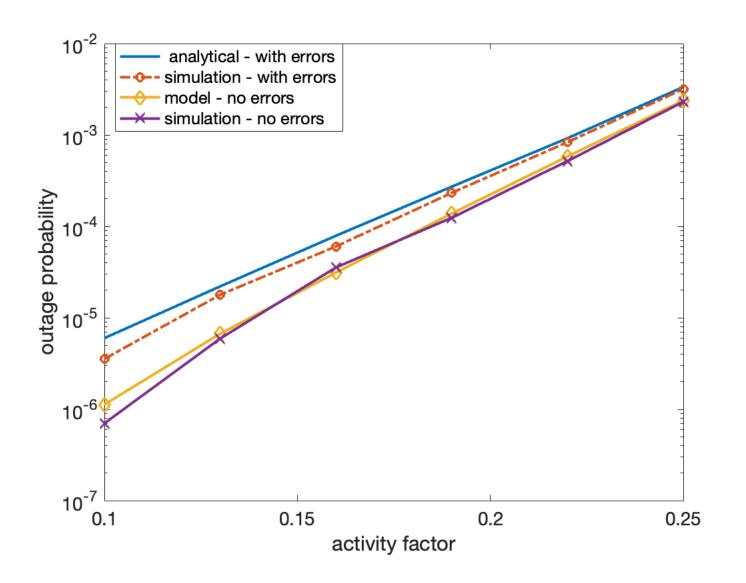
CentraleSupélec

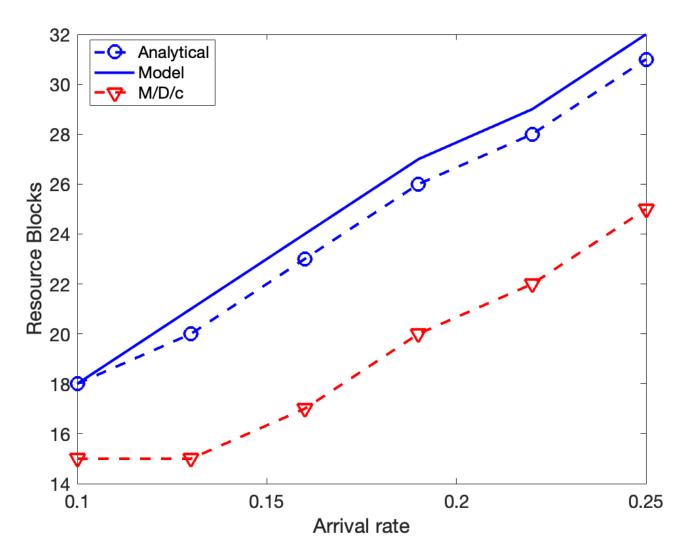
UNIVERSITE PARIS-SACLAY

> Objective:

- Modeling performance of URLLC based on outage probability, i.e., probability that the latency exceeding a maximal allowed budget does not exceed a target reliability constraint.
- Network dimensiong in terms of required resources in order to meet a target outage probability.

> MODEL


- > Outage probability :
- The outage probability:


$$\theta(a,\delta) = \sum_{r=1}^{R-1} \frac{r}{R} q_{\delta R+r} + 1 - \sum_{b=0}^{\delta R} q_b.$$

where: q_b is the probability that *b* resources will be needed in the future to serve the backlogged traffic. δ and *R* are the delay budget and the nb of available resources, respectively.

Model adaptation to URLLC:

- Heterogeneous Modulation and Coding Schemes (MCS): Users are subject to different radio conditions and each user uses adequate MCS.
- Integrating radio errors: transmission is subject to losses due to errors in radio link, our model accounts for retransmissions in this case.

• The outage probability becomes:

 $\begin{aligned} \theta'(a,\delta) &= \\ \varepsilon \sum_{\delta 1}^{\delta-1} [(\sum_{b_1=(\delta_1-1)R+1}^{\delta_1 R} q_{b1} \sum_{b_2=0}^{(\delta-\delta_1)R} q_{b2})] \\ &+ (1-\varepsilon)\theta(a,\delta) \end{aligned}$

where: ε is the loss probability of a packet, $\theta(a, \delta)$ is same as above but with multiplying arrival rate by $\frac{1}{1-\varepsilon}$.

- We propose low complexity model for outage computation:
 - Binomial and Poisson arrival distributions
 - We approximate the tail of the distribution $q = (q_1, q_2, q_3, ...)$ by the mean of geometric tail approach, using the following relation:

$$q_j = q_M \eta^{j-M}$$

PERSPECTIVES

- Performance model for the case of dynamic resource reservation policies.
- Coexistence between eMBB and URLLC: issue of modelling on two time scales, small for URLLC and larger for eMBB. Need for delayed reservations for URLLC in this case.
- Case of unknown arrivals, and need for learning them.

mohammed.abdullah@telecom-sudparis.eu