

P PARIS

DIVERSITY AND SUSTAINABILITY TRADE-OFFS IN GROUP THERMAL COMFORT PROVISION ON COMFORT, CONSUMPTION AND EQUALITY

Authors

Jun MA

Supervisors

Georgios Bouloukakis Denis Conan

MOTIVATION

- The HVAC (heating, ventilation and air conditioning) system is used to provide thermal comfort in offices, accounting for 30% to 50% of the energy consumption in commercial buildings.
- The diversity and sustainability challenges in providing thermal comfort for groups of people in shared spaces are an important research topic, because they involve people's health, well-being and productivity, as well as the energy efficiency and environmental impact of buildings. • In shared spaces, different people may have different thermal comfort preferences and needs, so a method to balance individual thermal comfort, energy consumption and equality is needed.
- **Majority**, based on the majority's thermal sensation,
- **Drift**, drift setpoint to the outdoor temperature to save energy,
- Fairness, based on cost and benefit,
- **Hybrid**, a combination of the previous three.
- Const-23, always use 23 degrees as the setpoint.

Afterward we evaluate them using three metrics:

Individual Thermal Comfort, which measures how much people's votes differ from the action.

In Collaboration With Roberto Yus UMBC

METHODOLOGY AND SET UP

The goal of the simulation is twofold: helping in setting up a realistic HVAC system response and a realistic interaction of the occupants with the building.

• To simulate the occupants of the building, our methodology considers three main aspects: their location, preference, thermal sensation.

We model people's diversity by distributing them three type of preferences by: Majority Cold, Neutral, Majority Warm and we assumed occupants vote on their thermal comfort. Then we aggregate their votes on the five strategies for the HVAC:

TIME	Monday	Tuesday	Wednesday	
08:30				
09:00				
09:30	Boss, Sellers		Page Assountants	
10:00		Callera	P/S Relations	
10.00	O II - NA I - I'	Jellers		

- **Thermal Comfort Equality**, which measures how much people are treated unfairly.
- **Energy Consumption** by the HVAC system.

RESULT

The result shows:

- **Majority** Approach instinctively performs the best on Individual Thermal Comfort.
- For Thermal Comfort Equality, the **Fairness** and Hybrid Approaches, as expected, obtains the best results overall.
- The Drift and Hybrid Approaches, designed for energy savings, ends up outperforming the rest of the approaches

To evaluate which strategy is **better overall**, we compute the average **z-scores** of the 3 metric in scenarios of five cities, result shows the Hybrid Approach generally outperforms the others

Z-scores of the strategies for each city.

City	Fairness	Drift	Majority	Hybrid	Const-23
Mumbai	-0.53	-0.17	-0.22	-0.67	1.58
Cairo	-0.50	-0.15	-0.29	-0.65	1.58
Los Angeles	-0.50	-0.22	-0.30	-0.60	1.61
Paris	-0.34	0.25	-0.04	-0.19	0.32
New York	-0.51	-0.16	-0.19	-0.64	1.51

Submitted to FAccT 2023

jun_ma@telecom-sudparis.eu Contact