

P PARIS

DYNAMIC LINK NETWORKS: EMULATION AND VALIDATION

MOTIVATION

Auteurs

Erick PETERSEN

Thesis Advisors

- Djamal ZEGHLACHE, Télécom SudParis/IP Paris
- Natalia KUSHIK, Télécom SudParis/IP Paris
- Jorge LOPEZ, Airbus
- Growing demand for interactive services, multimedia and network capabilities in modern networks
- Evaluation and Validation are critical for newly provided solutions
- Dynamic link networks, i.e., networks whose links parameters change, complicate the emulation environment
 - How to reduce the gap between real world and simulation/emulation environments ?
 - How adequate are simulators/emulators ?

EMULATION

- An emulation platform for Dynamic Link networks has been developed [1]
 - Flexible (executes any existing software)
 - Dynamic change the links' parameter

VALIDATION

 A formal verification approach using MSFOL has been proposed [2]

Fig. 1. Example Dynamic Link network

Partenaires

- values
- Executes traffic scenarios by a timed sequence of network packets

 A Cellular Automaton has been proposed to simulate and test different network evolution patterns [3]

Fig.4. CA evolution for a random initial configuration (network in Fig.1)

- The network model w.r.t. various network properties can be verified
 - Model validation
 - Run-time verification of the emulator

Description	Formula
The links are symmetric (for	$\pi_{\leftarrow}^{\rightarrow} = \forall x : \mathbb{Z} (((x \ge 1) \land (x \le E)) \implies \exists y :$
any link a return link exists)	$\mathbb{Z} ((y \ge 1) \land (y \le E) \land (src(E[x]) = dst(E[y])) \land$
	(dst(E[x]) = src(E[y])))
The edges in the edge array	$\pi_{e_V} = orall i: \mathbb{Z} \ \left(\left((i \ge 1) \land (i \le E) ight) \implies (\exists j,k:$
are composed of nodes in the	$\mathbb{Z} ((src(E[i]) = V[j]) \land (dst(E[i]) = V[k]))))$
node array	
The delay of all links is al-	$\pi_D = orall i : \mathbb{Z} \ (((i \ge 1) \land (i \le E)) \implies (d(E[i]) \le i)$
ways less or equal to the con-	D))
stant D	
The bandwidth of all links is	$\pi_B = \forall i : \mathbb{Z} \ (((i \ge 1) \land (i \le E)) \implies (b(E[i]) \ge i)$
greater or equal to the thresh-	B))
old B	
The network topology density	$\pi_{\delta} = (E /(V *(V -1))) \ge \delta$
is at least δ	

Table 1. Network properties of interest

REFERENCES

CONCLUSION

 A hybrid platform (emulation and simulation) with pattern generation capabilities for dynamic link networks has been presented

FUTURE WORK

- Traffic generation and related test generation strategies
 - Learning strategies and stochastic properties are to be integrated
- E.Petersen, J.Lopez, N.Kushik, C.Poletti and D.Zeghlache,"Dynamic Link Network Emulation: A Model-based Design", 2022 The 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), 2022, pp. 536-543, ISBN: 978-989-758-568-5, ISSN: 2184-4895
- E.Petersen, J.Lopez, N.Kushik, C.Poletti and D.Zeghlache,"On using SMT-Solvers for Modeling and Verifying Dynamic Network Emulators: (Work in Progress)", 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), 2020, pp. 1-3, Doi: 10.1109/NCA51143.2020.9306731
- E.Petersen, J.Lopez, N.Kushik, C.Poletti and D.Zeghlache,"On using Cellular Automata for Modeling the Evolution of Dynamic-Link Network Parameters", 2022 IEEE 21st International Symposium on Network Computing and Applications (NCA), 2022, Vol. 21 pp. 297-301, Doi: 10.1109/NCA57778.2022.10013557

Contact erick_petersen@telecom-sudparis.eu