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‘® FRAMEWORK |

‘® THE IMC ALGORITHM |

Goal. Sample « according » to a target distribution T on X that does not work well
with MCMC algorithms.

Idea. Transform a sample (X,)x=1 x from an instrumental distribution 7 into a sample
(X;);=1 j distributed under .

Known techniques and drawbacks.

= Rejection sampling : need to know a constant M such that = < M.

»  /mportance sampling : doesn't give a « real » sample but just a weighted sample
used to compute estimates.

Markov chain approach. Instrumental and target samples do not have to be i.i.d. but
can be generated by Markov chains targetting = and 7 resp.

Notations. Q : Markov kernel targetting 7, p,, = KZ—; density ratio, k : tuning param.

‘@ PRESENTATION OF THEIMC

REJECTION MC

Constraint. Constant M such that m < M1... Problem if such a const. M does not exist, is
unknown or is too large leading to excessive rejection rate.

Algo. Perform the rejection algorithm on a sample (X;)ren generated by Q with
acceptance function p = py,.

Instr. chain
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X1=X1 X2=X2 X3=X4
Output. A rejection chain (X;);=1.;, generated by the submarkovian rejection kernel S
defined, for h € F,(X), by:

She) = )| B [h(}?k)po?k) [T a- p(ffk))]
HEURISTICAL IMC

Ildea. Remove constraint m £ M7 i.e. allowing p, = 1 using repetitions in conjunction
with the Rejection MC algorithm.
Repetitions allow us to perform rejection using {p,} as acceptance function.

/ IS Sample R lw;] samples of X; \
X X ] X.i)?',...,)?'
(Xi; w; = PK(Xi)) > Accept X; w.p. {w;} (lw] -lI-Be;({wi}) réps,)
rejection Pt A; W.p. ww;
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Replaced with repetition kernel R:
pe@) = | n(x,dn)
— X — X, ;— X, —>

lN1=3 11’\72=1 11\/‘3:0 11’\74:2
X1,X2, X3 X4 Xs, X,

N; repetitions with
N; ~R(X;,)

Gen. by instr. kernel @
X ~ Q(Xg-1, *)

-

Choice of R. The optimal choice for R in terms of variance reduction is the shifted
Bernouilli

/

ﬁopt(x:') =1- {px(x)})SlpK(x)J + {plc(x)}5[p,c(x)J+1

A MH algorithm with proposal A(x, dy) and acceptance rate a(x, y) targetting m can be
obtained from the IMC by taking R(x,") = Geom(p(x)) where p(x) = fxa(x, Y)A(x,dy).

EXTENDED MARKOV CHAIN

Setup. Add remaining repetition counter as second component and extract the sample
from the first component at the end.

Property. Extended chain (X;, N;);en IS markovian with transition kernel :

R(x',n'+1
Ph(x,n) = ﬂ{nzl}h(x,n -1+ ﬂ{n:O} Z j S(x,dx") ( : )
= Ux pr(x")

h(x',n")
where pg(x") = R(x,[1:)).

Interpretation. While the counter is nonzero, decrease it by one. When it reaches zero :

» Use transition kernel S ensuring transitions from one accepted point to another
R(x,n +1)

» Use conditionned transition kernel R(x,n) = o)
R

taking into account that we only

draw accepted points i.e. N > 1.

ALGORITHM AND MAIN RESULTS

/INIT. Set an arbitrary X, and i = 0. \
REPEAT.
1. Draw Xz ~ Q(X_1, -) and N, ~R(Xx, +)
2. SetN; = N,
3. WhileN; >1: (X;,N;) « X;,,N; —1);i «i+1;
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Extd. chain (X’l, 2)}(}?1, 1)}()71, 0 )}()72, 1) — ()74, 1)?()74, 0)

(X, Ny);
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Targ- chain Xl#XZ#XS#XA}— ﬁs# X6#
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Proposition [Invariant measure]. P admits an invariant probability measure i, which
has m as its first marginal. Moreover, 7 is unique (under mild additional conditions).

Theorem [SLLN]. If @ admits a SLLN starting from any intital distribution, i.e.
for any & € M;(X) and g measurable function such that 7(g) < oo,

n-1
lim n~1 z 9(X) = #(9), IP’E2 —a.s.
n—->00

k=0

Then P also admits a SLLN starting from any initial distribution on X x N.

Theorem [CLT]. Assume that Q admits a solution to the Poisson equation
associated to p,(h — m(h)). Then, under mild additional assumptions on R, the
kernel P admits a CLT for h, i.e. there exists a constant ¢?(h) > 0 and a distribution
X, easily expressed using &, and corresponding to the distribution of the first
accepted couple, such that,

n

=1 Z(h(Xi) — th) = N (0,0%(h)),
i=1
Theorem [Geometric ergodicity]. Assume a specific set is a small set for Q and a
drift condition on that set for a function V. Then there exist constants 6, 8, > 1 and

{ < oo such that for all &' € M; (X X N),

2 5% dpy (€P*,7) < ¢
k=1

IP’; — law.

Br V(x)§' (dxdn)
XXN

[@ NUMERICAL EXPERIMENTS

IMPROVED SAMPLER

Question. Can IMC improve the effictiveness of a sampler targetting a multimodal
distribution by using it on an instrumental smoothened version of the latter distrib. ?

Setup. We target T = 1=, NV (u;, 1) an unnormalized gauss. mix., with p;~N(0,10%1,;)
e d=5n=6

« #=mnPfor B €(0,1)and (x,) = 7(-) for all x € X

« Qis aNo-U-turn Sampler (NUTS) and R is a shifted Bernouilli kernel

We estimate the MSE of by running 200 chains for each g € {0,004,0,01,0,04,0,1,1}

1.000
33.982

0.004

5 | 0.010
MSE | 16.150

6.123

0.040
0.544

0.100
17.863

INDEP. IMC VS. INDEP. MH ALGORITHM
Setup. We target T = %N(OA) + %N(OA) using :
e = N(0,4)
* Q(x,) =m()forallx e X
« R a shifted Bernouilli kernel
Niterations = 100,000
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Histogram of the chain Autocorrelation

Histogram of the replicas
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Analysis. Both histograms of the chain look similar, but autocorrelation suggests better
mixing for IMC. Also fewer max repetitions for IMC (reminder : geometric distrib. for MH).

| X X? X3 X4
MH | 620003 2.336-02 1.49e+00 L57e+01
IMC | 3.49-03  9.74e-03  8.40e-01  T.18e+00

Table. MSE for the first 4 moments for 10* repetitions of chains of length 10%.
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