

MACHINE LEARNING FOR ROAD ACTIVE SAFETY

GLOBAL DYNAMIC DRONE ASSISTED LANE CHANGE MANEUVER FOR RISK PREVENTION AND COLLISION **AVOIDANCE**

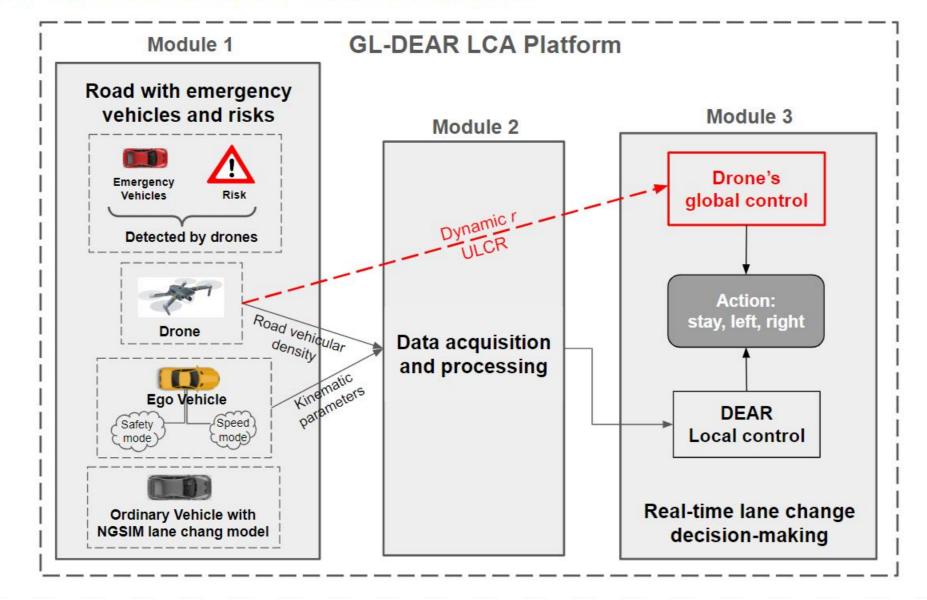
Auteurs

Jialin HAO

Rola NAJA

Djamal ZEGHLACHE

Partenaires



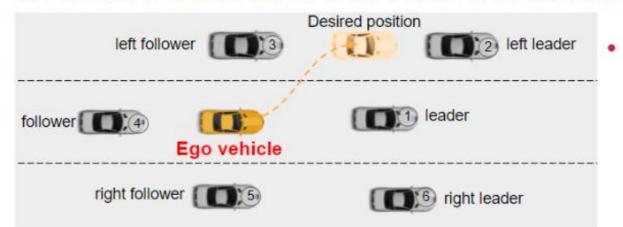
I. MOTIVATION

LANE CHANGE FOR DRONE-ASSISTED VEHICULAR NETWORKS

- Lane change (LC) leads to frequent car accidents
- There is an urgent need to timely LC decision-making
- We implemented a GL-DEAR platform
 - based on deep reinforcement learning method
 - assisted by drones to capture global view of the traffic
 - dealing with road potential risks and emergency vehicles

II. GL-DEAR PLATFORM

II-1. DEEP Q-NETWORK BASED ON A DYNAMIC REWARD FUNCTION

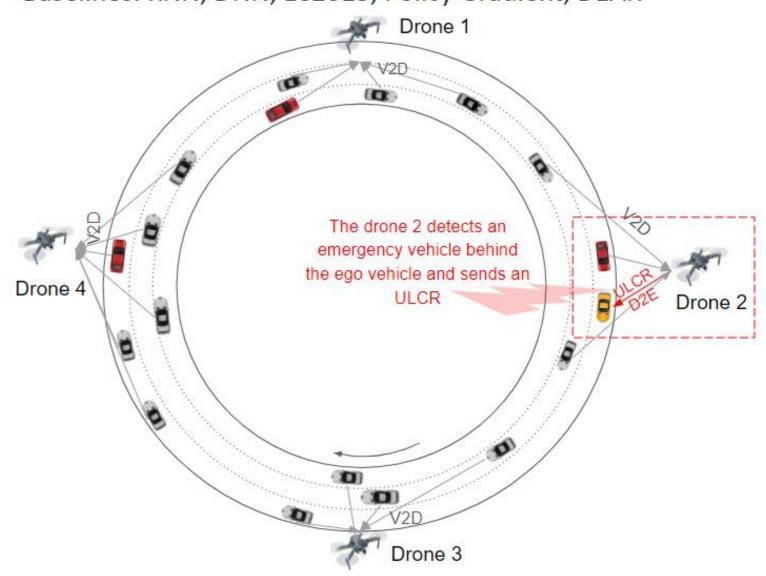

 $R = w_{comf}R_{comf} + w_{eff}R_{eff} + w_{safe}R_{safe}$

- ullet R_{comf} reduces sharp brakes and sudden accelerations
- ullet R_{eff} increases speed and reduces unnecessary lane changes
- R_{safe} increases road active safety:

 $R_{safe} = R_{den} + R_{colli} + R_{risk} + R_{block}$

- \circ R_{den} is related to road vehicular density, which is calculated by drones
- \circ R_{colli} is related to collision number, and is dynamically adjusted by drones
- \circ R_{risk} and R_{block} consider road potential risks and emergency vehicles

II-2. STATE SPACE AND ACTION SPACE


- Action space: $a = \{0, 1, 2\},\$ representing
 - staying in current lane
 - LC to the right
- LC to the left
- State space: $o[j] = \{o_{ego}[j], o_1[j], \dots, o_6[j]\}$, where:
 - $o_{ego}[j] = \{l_{risk}[j], x_{ego}[j], y_{ego}[j], v_{ego}[j], a_{ego}[j], l_{ego}[j]\}$ contains road risk label, kinematic parameters and current lane id of the ego vehicle at step j
 - $o_i[j] = \{x_i[j], y_i[j], v_i[j], a_i[j], l_i[j], d_i[j], p_i[j]; i \in [0,6]\}$ consists of the kinematic parameters, current lane id, distance to ego vehicle and vehicle priority of ego's i-th neighbor at step j

II-3. DRONES PLAY AN IMPORTANT ROLE IN RISK PREVENTION AND COLLISION AVOIDANCE

- The drones
 - calculate the road vehicular density
 - dynamically adjust R_{colli} according to the collision rate
 - sends urgent lane change requests (ULCRs) to recommend the ego vehicle to perform a LC when a risk or an emergency around ego vehicle is detected

III. SIMULATION SCENARIO

- 4-km circular highway with maximum allowed speed equals 100 km/h
- Authentic dataset: Next Generation Simulation Vehicle Trajectories and Supporting Data
- Krauss mobility model for longitudinal control for all vehicles
- GL-DEAR LC model for the ego vehicle and NGSIM LC model for ordinary vehicles
- Simulator: SUMO (Simulation of Urban Mobility)
- Baselines: KNN, DNN, LC2013, Policy Gradient, DEAR

V2D: vehicle-to-drone communication D2E: drone-to-ego communication

IV. RESULTS

TABLE I

PERFORMANCE TEST RESULTS IN SPARSE TRAFFIC										
Model	KNN	DNN	LC2013	PG	DEAR	GL-DEAR				
Collision Number	0	0	0	0	0	0				
LC Request	0.6	23	31.5	544	353.3	477				
Avg Speed (km/h)	29.9	46.3	60.9	60.8	65	58.6				
t_r (s)	26.1	22.8	14.4	19	5.6	4.7				
t_b (s)	83.3	22.8	66.4	100.4	68.7	50.1				

TARIF II

		11	ADLE II			
PERFORM	MANCE	TEST R	ESULTS IN	N MEDI	UM TRAF	FIC
Model	KNN	DNN	LC2013	PG	DEAR	GL-DEAR
Collision Number	0	0	0	0	0	0
LC Request	69	34.7	44.2	782.5	284.3	516
Avg Speed (km/h)	33.8	47.3	60	61.6	67.1	53
t_r (s)	29.1	29.6	25.1	46	10.9	7.7
t_b (s)	131.6	66	166.8	172	116	83

TABLE III

PERFORMANCE TEST RESULTS IN DENSE TRAFFIC Model DNN LC2013 KNN PG DEAR **GL-DEAR** Collision Number 0 44.3 65.5 202.2 717 296.8 466 LC Request 55.4 Avg Speed (km/h) 44 47.1 56.5 49.4 8.1 46.2 38.7 20.7 26.4 19.9 t_r (s) 248.2 178.3 82 315.6 106.5 75.8 t_b (s)

TABLE IV

PERFORMANCE WITH DIFFERENT n_{safe} Vehicle Number, nv 50 150 250 3 3 3 n_{safe} 53 55.3 58.6 56 60.7 52.5 45.9 49.4 Avg Speed (km/h) 5.2 4.7 Risky Time (s) 18.5 41.7 7.7 | 13.8 | 5.6 8.1 47.3 50.1 64.4 65.6 83 90.9 94.4 75.8 85.9 Blocking Time (s)

 n_{safe} in TABLE IV is a predefined threshold, according to which the ego vehicle switches between safety mode and efficiency mode

V. CONCLUSION AND PROSPECTS

- 1. We implemented a GL-DEAR LCA platform which:
 - enhances road active safety
 - takes into account risky roads and emergency vehicles with different traffic densities
- 2. LC decision should be made in a tight time window
 - We envision to adopt Federated Learning distributed on clients and controlled by the drones

Publications

- 1. J. Hao, R. Naja, D. Zeghlache, "GL-DEAR: Global Dynamic Drone Assisted Lane Change Maneuver for Risk Prevention and Collision Avoidance," accepted by ICC 2023
- 2. J. Hao, R. Naja, D. Zeghlache, "Drone-Assisted Lane Change Maneuver using Reinforcement Learning with Dynamic Reward Function," IEEE WiMob 2022, October, Greece