

PPARIS

JOINT SCHEDULING-OFFLOADING POLICIES IN NOMA-BASED MOBILE EDGE COMPUTING SYSTEMS

Ibrahim Djemai, Mireille Sarkiss And Philippe Ciblat

1. CONTEXT AND MOTIVATION CONTEXT

- A wireless communications scenario with multiple NOMA users connected to Base Station (BS) that has Mobile Edge Computing Capabilities (MEC).
- Users can execute the buffered packets with strict delay either locally or by offloading them to the MEC server.

GOAL

Design efficient policies for joint resource scheduling and computation offloading, to minimize the overall number of dropped packets.

4. CHANNEL MODEL

- Rayleigh Flat-fading channel.
- $g_i = |h_i|^2$

Bitstream

UE₂ Signal

Decoding

• Uplink:

Downlink:

 $|h_1|^2 > |h_2|^2$

- Exponential distribution for the channel variations.
- The channel is quantized $\tilde{g}_i = Q(g_i)$ into finite states.

7. PROBLEM RESOLUTION

 $\pi^{\star} = \operatorname{argmin}(J^{\pi})$

- Solve it using Sequential Decision Making and Reinforcement Learning approaches:
 - Policy Iteration (**PI**)
 - Value Iteration (VI)
 - Q-Learning (QL) •
 - Deep Q-Learning Network (**DQN**)
- Compare the results against naive methods :
 - Naive Offload (NO)
 - Naive Local (NL)
 - Naive Random (NR)

2. SYSTEM MODEL

- 2 Users communicating with the BS, in a NOMA mode.
- 3 Decisions can be made at the beginning of each time slot:
 - Stay Idle
 - Execute packets Locally
 - Offload the packets to the BS (one or both users).
- With the number of packets to be processed.

3. BUFFER AND DATA MODELS

- Decision type (idle, local or offload).
- Number of packets to transmit.

• Action space : *a*

- Random Arrival of packets following the Poisson distribution with mean λ_d
- Strict delay constraint for the buffer with size B_d
- A packet can be discarded if :
 - It reaches the maximum packet age K_0 : **Delay Violation**.
 - The buffer reaches its maximum • capacity B_d : **Buffer Overflow**.
- Transition Function : T $p(\mathbf{s}'|\mathbf{s}) = \prod_{i \in \{1,2\}} p(\mathbf{b}'_i|\mathbf{b}_i, \mathbf{a}) p(\tilde{g}_i)$ • Cost Function: J $J^{\pi} = \lim_{N \to \infty} \mathbb{E}^{\pi} \left| \sum_{n=0}^{N} \gamma^{n} (c^{o}[n] + c^{v}[n]) \right|$
- *c*^{*o*}: Cost due to buffer overflow
- c^{ν} : Cost due to delay violation

Scalability Experiments

8. CONCLUSIONS

Total

- PI and VI are optimal but not scalable.
- QL and DQN perform better than naive methods, and DQN scales well.
- NOMA and MEC advantages are shown