

IP PARIS

DIMENSIONING RESOURCES OF NETWORK SLICES FOR ENERGY-PERFORMANCE TRADE-OFF

NETWORK SLICING

Auteurs

Wei Huang Andréa Araldo Hind Castel-Taleb Badii Jouaber

PHYSICAL NETWORK modelled as a graph G(V, E)

DECISION VARIABLES

Partenaires

This work was partially funded by Beyond5G, a project of the French Government's recovery plan "France Relance".

\bigcirc 1 (7

1. Each node $v \in V$ has CPU capacity R_V 2. Each edge (v,v') \in E has bandwidth capacity $R_{V,V'}$

SERVICE PROVIDER (SLICE)

1. Service Provider is deployed as a chain of n^s software components $\{c_i^s\}$ for i = 1, ..., n^s

PROPOSED MODEL USING JACKSON NETWORK

NUMERICAL RESULTS

- **1.** $r_{i,v}^{S}$: The CPU allocated by the network operator to component replica $c_{i,v}^{s}$
- 2. $r_{i,v,i+1,v'}^{s}$: The bandwidth allocated by the NO for the communication between component replicas $c_{i,v}^{s}$ and $c_{i+1,v'}^{s}$

OBJECTIVE

1. **Minimize** total power consumption meanwhile satisfying the delay constraints of the different SPs

OPTIMISATION FORMULA

OptRes :
$$\min \sum_{v \in \mathcal{V}} \sum_{q \in \mathcal{Q}_v} P_{q.v}(r_q) + \sum_{(u,u') \in \mathcal{E}} P_{u,u'}(r_{u,u'})$$
 (6)

s.t.
$$\sum_{q \in Q_v} r_q \le R_v, \forall v \in \mathcal{V}$$
(7)

$$\sum_{q \in \mathcal{Q}_{u,u'}} r_q \le R_{u,u'}, \forall (u,u') \in \mathcal{E}$$
(8)

$$T^{s}\left(\{r_{q}\}_{q\in\mathcal{Q}^{s}}\right)\leq D^{s},\forall SP\ s$$
(9)

$$\mu_q(r_q) > \lambda_q, \forall q \in \mathcal{Q}^s \tag{10}$$

$$r_{u,u'} = \sum_{q \in \mathcal{Q}_{u,u'}} r_q, \forall (u,u') \in \mathcal{E}$$
(11)

1. Eqn(7)-(8) guarantee that we do not allocate, on nodes and links, more capacity than available.

- 2. Eqn (9) ensures that the average journey time of any request does not exceed the delay constraint of the respective slice.
- 3. Eqn (10) guarantees the stability of Jackson network.

Figure 3: Delay (SP1 in black and SP2 in grey) and system power used for different latency requirements D^1 of SP 1

PUBLISHED IN

W. Huang, A. Araldo, H. Castel-Taleb, B. Jouaber. "Dimensioning resources of Network Slices for energyperformance trade-off" 27th IEEE Symposium on Computers and Communications (ISCC 2022), 30th June - 3rd July 2022, Rhodes Island, Greece.

MinRes: Only the minimum resources needed to satisfy stability conditions (10) are allocated.

PropRes: All physical link and node resources are used: If a node v hosts replica $c_{i,v}^1$ of SP1 and replica $c_{j,v}^2$ of SP2, the allocation is $r_{i,v}^1 = \frac{\alpha_{c_{i,v}^1}}{\alpha_{c_{i,v}^1} + \alpha_{c_{j,v}^2}} \cdot R_v$, $r_{i,v}^2 = \frac{\alpha_{c_{ijv}^2}}{\alpha_{c_{i,v}^1} + \alpha_{c_{j,v}^2}} \cdot R_v$.